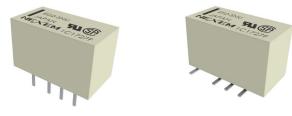


Overview


The KEMET UC2/UD2 miniature signal relays offer a super compact case size in a flat package. Minimal board space is consumed with either a through-hole or surface mount configuration. These relays are recognized by UL and CSA, while also being compliant with Part 68 of the FCC's 1,500 V surge capacity.

Applications

- · Electronic switching systems
- PBX
- · Terminal equipment
- · Telephone systems

Benefits

- Low power consumption (< 140 mW)
- · Super compact and lightweight
- · Flat package for dense mounting
- · Low magnetic interference
- Tube or embossed tape and reel packaging
- UL recognized (E73266) and CSA certified (LR46266)
- · Surface mount and through-hole options

Part Number System

UD2-	3	S	NU	-L
Series	Coil Voltage	Latch Type	Lead Type	Packaging
UC2- = Through-hole mount UD2- = Surface mount	3 = 3 VDC 4.5 = 4.5 VDC 5 = 5 VDC 9 = 9 VDC 12 = 12 VDC	Blank = Non-latch type S = Single coil latch type	NU = Standard NE = Low power consumption (Non-latch) NJ = Trimmed NUN = Minimum footprint NEN = Low power consumption (Non-latch), Minimum footprint	Blank = Tube -L = Embossed tape on reel

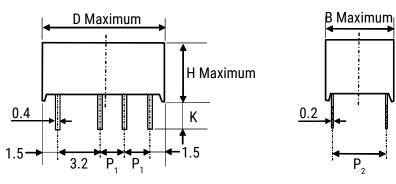
Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикаеток (423)249-28-31 Владикаеток (423)249-28-31 Воларикаеток (423)249-28-31 Волгоград (844)278-03-48 Волгоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (832)66-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Курск (4712)77-13-04 Курск (4712)77-13-04 Курск (4712)77-13-04 Курск (4742)52-20-81 Казахстан +7(7/12)727-132 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (852)20-53-41 Нижний Новгород (831)429-08-12 Ноябрьск (3496)41-32-12 Ноябрьск (3496)41-32-12 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (462)44-53-42 Орен (462)44-53-42 Орен (942)21-46-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

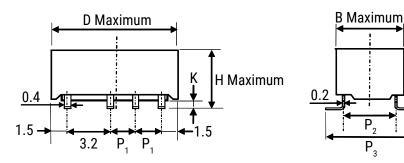
Киргизия +996(312)96-26-47

kmc@nt-rt.ru || https://kemet.nt-rt.ru/

Ростов-на-Дону (863)308-18-15 Тол Рязань (4912)46-61-64 Том Самара (846)206-03-16 Тул Саранск (8342)22-96-24 Тюл Саратов (845)249-38-78 Ула Севастополь (8692)22-31-93 Уфя Симферополь (3652)67-13-56 Хаб Смоленск (4812)29-41-54 Чеб Сочи (862)225-72-31 Чел Ставрополь (8652)20-65-13 Чер Суруту (3462)77-98-35 Чит Сыктывкар (8212)25-95-17 Яку Тамбов (4752)50-40-97 Ярс Тверь (4822)263-31-35


Тольятти (8482)63-91-07 Томск (3822)88-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

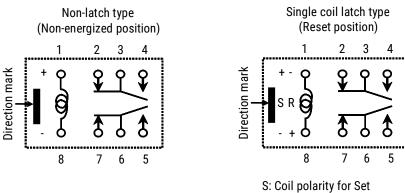
Россия +7(495)268-04-70



Dimensions – Millimeters

UC2 Series

UD2 Series


Series	D	Н	В	P ₁	P ₂	P ₃	K
UC2 (NU, NE)	10.6	5.3	6.5	2.2	5.08	-	3.4
UC2 (NJ)	10.6	5.3	6.5	2.2	5.08	_	2.8
UD2 (NU, NE)	10.6	5.45	6.5	2.2	5.08	8.4	0.2
UD2 (NUN, NEN)	10.6	6.0	6.5	2.2	5.08	6.8	0.2

General tolerance: ±0.3 Tolerance of lead pitch: ±0.15

Pin Configurations

Bottom view

R: Coil polarity for Set

Safety Standards and Ratings

Certification Body	Mark	Specification	File Number	Rating
UL	GU ®	UL Recognized (UL508)1	E73266	30 VDC, 1 A (resistive)
CSA	(F)	CSA Certified (CSA 22.2 #14) ²	LR46266	110 VDC, 0.3 A (resistive) 125 VAC, 0.5 A (resistive)

¹ Spacing: UL840

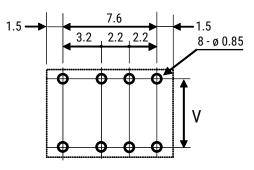
² Spacing: CSA std950

Certification Body	Mark	Specification	File Number	Class	Rating
τυν	\triangle	TUV Certified (EN61810)	2050596	Basic insulation	Creepage and clearance of coil to contact is more than 2 mm (According to EN60950)

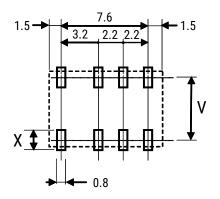
Environmental Compliance

All KEMET relays are RoHS Compliant.

Table 1 – Ratings & Part Number Reference


Part Number	Nominal Coil Voltage	Lead Type	Packaging	
() Designates Latch Type	(VDC)			
UC2-3(1)NU	3.0	Radial	Tube	
UC2-4.5(1)NU	4.5	Radial	Tube	
UC2-5(1)NU	5.0	Radial	Tube	
UC2-12(1)NU	12.0	Radial	Tube	
UC2-3(1)NJ	3.0	Radial	Tube	
UC2-4.5(1)NJ	4.5	Radial	Tube	
UC2-5(1)NJ	5.0	Radial	Tube	
UC2-9(1)NJ	9.0	Radial	Tube	
UC2-12(1)NJ	12.0	Radial	Tube	
UC2-3NE ¹	3.0	Radial, Low power consumption	Tube	
UC2-4.5NE1	4.5	Radial, Low power consumption	Tube	
UC2-5NE ¹	5.0	Radial, Low power consumption	Tube	
UD2-3(1)NU	3.0	Surface mount	Tube	
UD2-4.5(1)NU	4.5	Surface mount	Tube	
UD2-5(1)NU	5.0	Surface mount	Tube	
UD2-12(1)NU	12.0	Surface mount	Tube	
UD2-3NE ¹	3.0	Surface mount, Low power consumption	Tube	
UD2-4.5NE ¹	4.5	Surface mount, Low power consumption	Tube	
UD2-5NE ¹	5.0	Surface mount, Low power consumption	Tube	
UD2-3(1)NU-L	3.0	Surface mount	Tape on Reel	
UD2-4.5(1)NU-L	4.5	Surface mount	Tape on Reel	
UD2-5(1)NU-L	5.0	Surface mount	Tape on Reel	
UD2-12(1)NU-L	12.0	Surface mount	Tape on Reel	
UD2-3NE-L ¹	3.0	Surface mount, Low power consumption	Tape on Reel	
UD2-4.5NE-L ¹	4.5	Surface mount, Low power consumption	Tape on Reel	
UD2-5NE-L ¹	5.0	Surface mount, Low power consumption	Tape on Reel	
UD2-3(1)NUN	3.0	Surface mount, Minimum footprint	Tube	
UD2-4.5(1)NUN	4.5	Surface mount, Minimum footprint	Tube	
UD2-5(1)NUN	5.0	Surface mount, Minimum footprint	Tube	
UD2-12(1)NUN	12.0	Surface mount, Minimum footprint	Tube	
UD2-3NEN ¹	3.0	Surface mount, Low power consumption, Minimum Footprint	Tube	
UD2-4.5NEN ¹	4.5	Surface mount, Low power consumption, Minimum Footprint	Tube	
UD2-5NEN ¹	5.0	Surface mount, Low power consumption, Minimum Footprint	Tube	
UD2-3(1)NUN-L	3.0	Surface mount, Minimum footprint	Tape on Reel	
UD2-4.5(1)NUN-L	4.5	Surface mount, Minimum footprint	Tape on Reel	
UD2-5(1)NUN-L	5.0	Surface mount, Minimum footprint	Tape on Reel	
UD2-12(1)NUN-L	12.0	Surface mount, Minimum footprint	Tape on Reel	
UD2-3NEN-L1	3.0	Surface mount, Low power consumption, Minimum Footprint	Tape on Reel	
UD2-4.5NEN-L ¹	4.5	Surface mount, Low power consumption, Minimum Footprint	Tape on Reel	
UD2-5NEN-L ¹	5.0	Surface mount, Low power consumption, Minimum Footprint	Tape on Reel	
Part Number	Nominal Coil Voltage	Lead Type	Packaging	

(1) To complete KEMET part number, leave blank for Non-latch or insert S for Single coil. Designates latch type. ¹ Only available as Non-latch.



Land Pattern – Millimeters

UC2 Series (bottom view)

UD2 Series (top view)

Series	V	Х
UC2 (NU, NE, NJ)	5.08	_
UD2 (NU, NE)	6.74	1.86
UD2 (NUN, NEN)	5.94	2.66

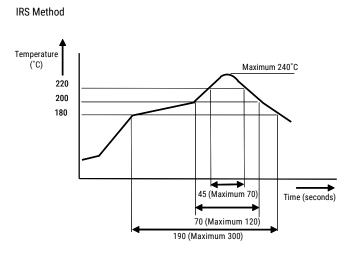
Soldering Process

UC2 - Through-hole Mounting

Automatic Soldering

Preheating: 110-120°C/110 seconds (maximum)

Solder temperature: 260°C maximum


Solder time: 5 seconds maximum

Note: KEMET recommends cooling down a printed circuit board to less than 110°C within 40 seconds after soldering.

Manual Soldering

Solder temperature: 350°C maximum Solder time: 3 seconds maximum

UD2 – Surface Mounting

Note: Temperature profile shows printed circuit board surface temperature on the relay terminal portion. Please consult KEMET if you wish to use a temperature profile other than above.

Contact Specifications

Item		UC2/UD2		
Contact Form		2 Form C		
Contact Material		Silver alloy with gold alloy overlay		
	Maximum Switching Power	30 W, 37.5 VA		
Contact Datings	Maximum Switching Voltage	220 VDC, 250 VAC		
Contact Ratings	Maximum Switching Current	1 A		
	Maximum Carrying Current	1A		
Minimum Contact Ratings		10 mVDC, 10 μA*1		
Initial Contact Resistance		100 mΩ maximum (initial)		
Operating Time (excluding bounce)		Approximately 2 milliseconds		
Release Time (excluding bounce)		Approximately 1 milliseconds		
Insulation Resistance		1,000 MΩ at 500 VDC		
	Between Open Contacts	1,000 VAC (for one minute), 1,500 V surge (10 x 160 $\mu s)^{\star_2}$		
Withstand Voltage	Between Adjacent Contacts	1,000 VAC (for one minute), 1,500 V surge (10 x 160 μs)*2		
	Between Coil and Contacts	1,500 VAC (for one minute), 2,500 V surge (2 x 10 μs)*3		
Shock Resistance		735 m/s² (75 G) – misoperation 980 m/s² (100 G) – destructive failure		
Vibration Resistance		10 to 55 Hz, double amplitude 3 mm (20 G) – misoperation 10 to 55 Hz, double amplitude 5 mm (30 G) – destructive failure		
• · · · · ·		-40 to +85°C		
Ambient Temperature		-40 to +70°C (Low power consumption type)		
Coil Temperature Rise		18°C at nominal coil voltage (140 mW)		
Dunning Creations	Non-load	5 x 10 ⁷ operations (Non-latch type)*4 1 x 10 ⁷ operations (Latch type)		
Running Specifications	Load	30 VDC 1 A (resistive), 1 x 10 ⁵ operations at 20°C, 1 Hz 125 VAC 0.3 A (resistive), 1 x 10 ⁵ operations at 20°C, 1 Hz		
Weight		Approximately 0.8 g		

^{*1} This value is a reference value in the resistance load. Minimum capacity changes depending on the switching frequency, environment temperature, and load.

 *2 Rise time: 10 μs ; decay time to half crest: 160 $\mu s.$

^{*3} Rise time: 2 μ s; decay time to half crest: 10 μ s.

^{*4} This shows the number of operations with fatal defects. Stable characteristics are maintained for 1 x 10⁷ operations.

Coil Specifications

Non-latch Type (at 20°C)						
Nominal Coil Voltage (VDC)	Coil Resistance (Ω) ±10%	Operating Voltage ¹ (VDC)	Release Voltage ¹ (VDC)	Nominal Operating Power (mW)		
3.0	64.3	2.25	0.30	140		
4.5	145.0	3.38	0.45	140		
5.0	178.0	3.75	0.50	140		
9.0	579.0	6.75	0.90	140		
12.0	1028.0	9.00	1.20	140		

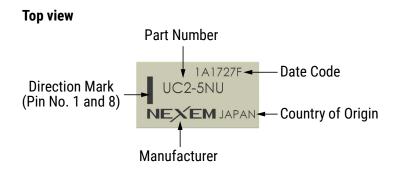
¹ Test by pulse voltage.

Coil Specifications cont.

	Single Coil Latch Type (at 20°C) ²						
Nominal Coil Voltage (VDC)	Coil Resistance (Ω) ±10%	Set Voltage ¹ (VDC)	Reset Voltage ¹ (VDC)	Nominal Operating Power (mW)			
3.0	90.0	2.25	2.25	100			
4.5	202.5	3.38	3.38	100			
5.0	250.0	3.75	3.75	100			
9.0	810.0	6.75	6.75	100			
12.0	1440.0	9.00	9.00	100			

¹ Test by pulse voltage.

² Latch type relays should be initialized to a known position before using. Only the specified polarity should be used to energize the coil.

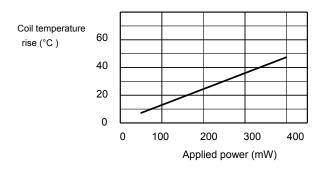

Non-latch, Low Power Consumption (NE, NEN) Type (at 20°C)						
Nominal Coil Voltage (VDC)	Coil Resistance (Ω) ±10%	Operating Voltage ¹ (VDC)	Release Voltage ¹ (VDC)	Nominal Operating Power (mW)		
3.0	90.0	2.40	0.30	100		
4.5	202.5	3.60	0.45	100		
5.0	250.0	4.00	0.50	100		

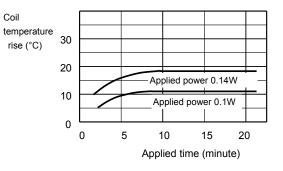
¹ Test by pulse voltage.

Recommended Relay Drive Conditions

Coil Type	Rating	Ambient Temperature
Non-latch	Voltage: ≤ ±5% of nominal voltage	-40 to +85°C
Non-latch (Low power consumption type)	voltage. S 15% of nonlinal voltage	-40 to +70°C
Single Coil	Square pulse (rise and fall time is rapid) Pulse height: $\leq \pm 5\%$ of nominal voltage Pulse Width: > 10 ms	-40 to +85°C

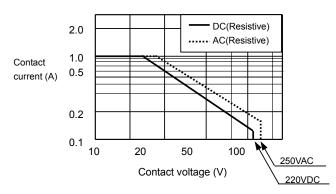
Marking

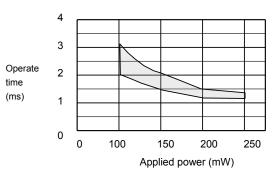


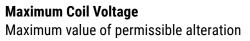


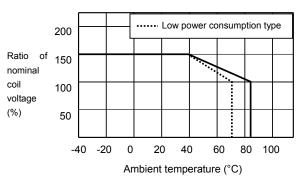
Performance Data

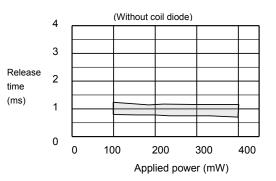
Coil Temperature Rise


Temperature is measured by coil resistance

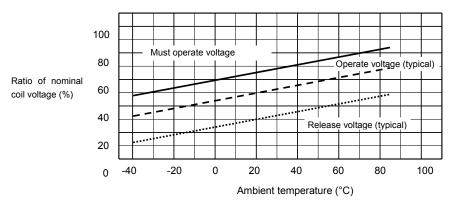

Switching Capacity


Maximum Values

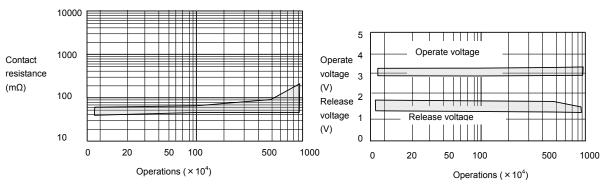



Applied Voltage vs. Timing

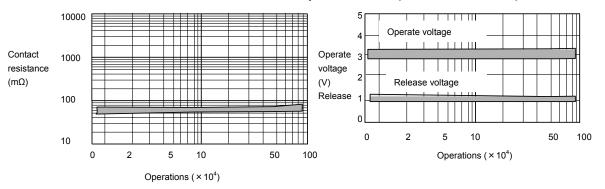
(Sample: UC2-5NU)



Performance Data cont.


Operate and Release Voltage vs. Ambient Temperature

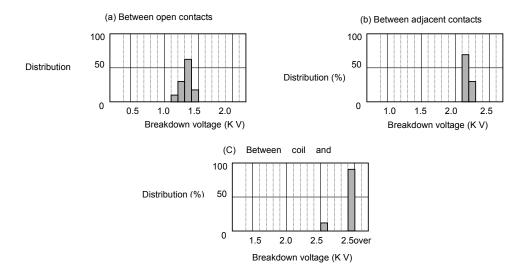
This shows a typical change of operate (release) voltage. The value of must operate is estimated, so coil voltage must be applied higher than this value for safe operation. For hot start operation, please inquire with KEMET.


Running Test (Non-load)

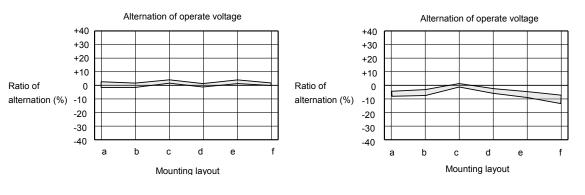
(Load: none; Drive: 5 VDC, 50 Hz, 50% duty; Ambient Temperature: room temperature; Sample: UC2-5NU, 20 pieces)

Running Test (Load)

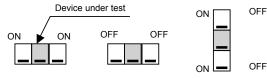
(Load: 50 VDC, 0.1 A resistive; Drive: 5 VDC, 5 Hz, 50% duty; Ambient Temperature: 85°C; Sample: UC2–5NU, 10 pieces)



Performance Data cont.


Breakdown Voltage

(Sample: UC2-5NU, 10 pieces)

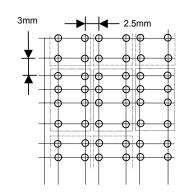

Alteration of Voltage in Dense Mounting

(magnetic interference)

с

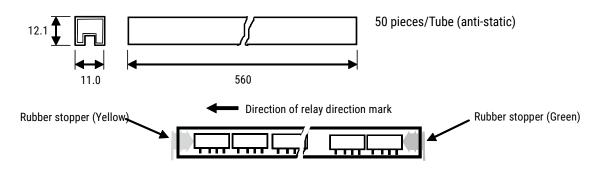
d

а

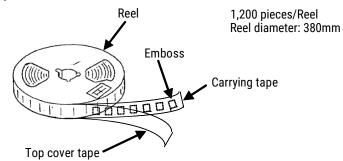

ON

ON

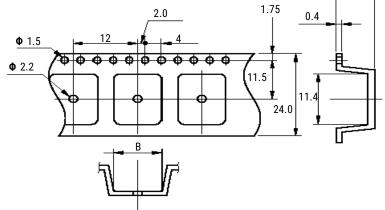
ON



b

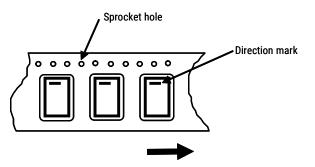


Tube Packing – Millimeters



Tape & Reel Packaging Information (UD2 only) – Millimeters

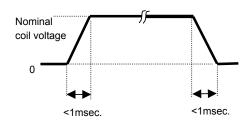
Appearance



Tape Dimensions

Series	Α	В
NU-L, NE-L	Maximum 6.2	9.2
NUN-L, NEN-L	Maximum 6.6	7.5

Relay Direction Mark and Tape Carrying Direction


Notes on Using Relays

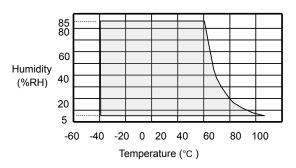
1. Contact Load

Make sure that the contact load is within the specified range; otherwise, the lifetime of the contacts will be shortened considerably. Note that the running performance shown is an example, and that it varies depending on parameters such as the type of load, switching frequency, driver circuit, and ambient temperature under the actual operating conditions.

2. Driving Relays

- If the internal connection diagram of a relay shows + and symbols on the coil, apply the rated voltage to the relay in the specified direction. If a rippled DC current source is used, abnormalities such as heat at the coil may occur.
- The maximum voltage that can be applied to the coil of the relay varies depending on the ambient temperature. Generally, the higher the voltage applied to the coil, the shorter the operating time. Note, however, that high voltage also increases the bounce of the contacts and the contact opening and closing frequency, which may shorten the lifetime of the contacts.

- For consistent operation, the driving voltage should have rise and fall times of less than 1 ms.
- For a latching relay, apply a voltage to the coil according to the polarity specified in the internal connection diagram of the relay.
- If a current is applied to the coil over a long period of time, the coil temperature rises, promoting generation of organic gas inside the relay, which may result in faulty contacts. In this case, use of a latching relay is recommended.
- The operating time and release time indicate the time required for each contact to close after the voltage has been applied to or removed from the coil. However, because the relay has a mechanical structure, a bounce state exists at the end of the operating and release times. Furthermore, because additional time is required until the contact stabilizes after being in a high-resistance state, care must be taken when using the relay at high speeds.


3. Operating Environment

- Make sure that the relay mounted in the application set is used within the specified temperature range. Use of a relay at a temperature outside this range may adversely affect insulation or contact performance.
- If the relay is used for a long period of time in highly humid (RH 85% or higher) environment, moisture may be absorbed into the relay. This moisture may react with the NOx and SOx generated by glow discharges that occur when the contacts are opened or closed, producing nitric or sulfuric acid. If this happens, the acid produced may corrode the metallic parts of the relay, causing operational malfunction.
- If any material containing silicon (silicon rubber, silicon oil, and silicon based coating material) is used in the neighborhood of relay, there is some possibility that these materials will emit silicon gas that will penetrate the relay. In this case, the switching contact may generate silicon compounds on the surface of contacts. This silicon compound may result in contact failure. Avoid use of relay in such an environment.

Notes on Using Relays cont.

• Because the operating temperature range varies depending on the humidity, use the relay in the temperature range illustrated in the figure below. Prevent the relay from being frozen and avoid the generation of condensation.

- The relay maintains constant sealability under normal atmospheric pressure (810 to 1,200 hpa). Its sealability may be degraded or the relay may be deformed and malfunction if it is used under barometric conditions exceeding the specified range.
- The same applies when the relay is stored or transported. Keep the upper-limit value of the temperature to which the relay is exposed after it is removed from the carton box to within 50°C.
- Permanent magnets are used in polarized relays. For this reason, when magnets, transformers, or speakers are located nearby the relay characteristics may change and faulty operations may result.
- If excessive vibration or shock is applied to the relay, it may malfunction and the contacts remain closed. Vibration or shock applied to the relay during operation may cause considerable damage to or wearing of the contacts. Note that operation of a snap switch mounted close to the relay or shock due to the operation of magnetic solenoid may also cause malfunctioning.

4. Mounting

- When mounting a relay onto a PC board using an automatic chip mounter, if excessive force is applied to the cover of the relay when the relay is chucked or inserted, the cover may be damaged or the characteristics of the relay degraded. Keep the force applied to the relay to within 1 kg.
- Avoid bending the pins to temporarily secure the relay to the PC board. Bending the pins may degrade sealability or adversely affect the internal mechanism.
- Ventilation immediately after soldering is recommended. Avoid immersing the relay in cleaning solvent immediately after soldering due to the danger of thermal shock being applied to the relay.
- Use an alcohol-based or water-based cleaning solvent. Never use thinner and benzene because they may damage the relay housing.
- Do not use ultrasonic cleaning because the vibration energy generated by the ultrasonic waves may cause the contacts to remain closed.

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волгоград (844)278-03-48 Ворогеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Ижевск (3412)26-03-58 Иркутск (345)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Киемерово (3842)65-04-62 Киров (332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Краснодрск (391)204-63-61 Курск (4712)77-13-04 Курск (4712)77-13-04 Курскан (42522)50-90-47 Липецк (4742)52-20-81 Казахстан +7(7172)727-132

Иваново (4932)77-34-06

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новбузиецк (3843)20-46-81 Ноябрьск (348)41-32-12 Новосибирск (383)227-86-73 Омск (347)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Киргизия +996(312)96-26-47

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саранск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск. (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут 3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Таерь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улановск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чеобксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (412)23-90-97 Ярославль (4852)69-52-93