FG, Fluxgate-Based Residual Current Sensor

Overview

The FG-R01-4A sensor is a high-sensitivity AC and DC leakage current sensor with individual open drain alarms and an analog output for leakage current indication. In addition, its integrated test coil can be initiated by a test input to perform a functional alarm test.

Applications

Typical applications include residual current sensor for In-Cable Control and Protection Devices (IC-CPD) or Wallbox.

Benefits

- · Open-loop, fluxgate-based current sensor
- · PCB mounting
- · Digital output of fault detection
- Conforms to IEC 62752:2016/A1:2018
- Conforms to IEC 62955:2018 ¹
- · Conforms to UL 2231-2
- · RoHS compliant
- · 3,000 A surge current capability
- Composed of AEC-Q certified parts

Ordering Information

FG-	R01-	4A
Series	Shape	Current Detection Standards
FG	R01 = Horizontal without busbar	4A = IEC 62752:2016/A1:2018 and UL 2231-2, IEC 62955:2018 ¹

1 Conditional and dependant on the circuit/system designed as explained in the section Recommended Circuit of this datasheet.

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владиваосток (423)249-28-31 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волгоград (8472)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4962)3-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноррск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(7172)727-132

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37

Пермь (342)205-81-47 Киргизия +996(312)96-26-47

Псков (8112)59-10-37

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саранск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97

Тверь (4822)63-31-35

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Dimensions in mm

Pin Number	Symbol
1	VDD
2	GND
3	AOUT
4	DC Fault
5	AC Fault
6 TEST	
7-10	Dummy

PCB Footprint - Top View

Output Characteristics

When the residual current exceeds the threshold level (Idn(DC) or Idn(AC)), PIN 4 (DC Alarm) or PIN 5 (AC Alarm) will change from low level to high impedance. Each output goes back from high impedance to low level when residual current falls below recovery level.

Output Characteristics (cont.)

PIN 3 Analog Output - DC Characteristics

Output State

DC Alarm	AC Alarm	State	
GND	GND	Normal Condition	
High Impedance	GND	DC Detection Current > 6 mA	
GND	High Impedance	AC Detection Current > 20 mA	
High Impedance	High Impedance	DC Detection Current > 6 mA and AC Detection Current > 20 mA	

 $\label{thm:condition} \textit{Temperature of primary wire should not exceed 105°C}.$

The rise time of the supply voltage is 50 us to 100 ms.

Output Characteristics (cont.)

Frequency Characteristics of Analog Output

Trip Current of Pulsating DC at Phase 0°, 90°, 180°

Above data are not guaranteed values, for reference only.

Frequency Characteristics of Response Value

Trip Current of AC + DC

Environmental Compliance

FG sensors are RoHS compliant.

Specifications

Item	Performance Characteristics
Primary Rated Voltage	250 V
Primary Nominal Current	80/40 A Maximum (1 phase/3 phase)
Supply Voltage Range	4.75 – 5.25 V (5 V typical)
Maximum Input Voltage of Digital Output	Supply Voltage + 0.3 V
Input Voltage Range of TEST (LOW)	0.0 - 0.6 V
Input Voltage Range of TEST (HIGH)	2.5 V - Supply Voltage
Maximum Sink Current of Digital Output	10 mA
Current Consumption	13 mA (at measurement 0 mA)
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	-40°C to +105°C

Tests

ESD Test

DC Detection Current within specifications as per Table 1 – Ratings & Part Number Reference after ESD test.

Parameter	Result
Electrostatic Discharge Voltage Human-Body Model (HBM) R = 1,500 Ω, C = 100 pF, U = ±2,000 V	Passed
Electrostatic Discharge Voltage Charged-Device Model (CDM) U = ±800 V	Passed

Tests (cont.)

EMC Test

DC Alarm and AC Alarm do not malfunction during noise stimulation.

Parameter	Conditions	Result
IEC 61000-4-3 Radiated, radio-frequency, electromagnetic field immunity	20 V/m, 80 MHz – 1 GHz 80% AM 1 kHz	Passed
ISO 11452-2 (ALSE) Electrical disturbances from narrowband radiated electromagnetic energy	50 V/m 200 MHz – 800 MHz 80% AM 1 kHz, 800 MHz – 2 GHz PM	Passed
ISO 11452-4 (BCI) Electrical disturbances from narrowband radiated electromagnetic energy	100 mA 20 MHz – 200 MHz 80% AM 1 kHz	Passed
IEC 62955 § 9.18.2 Surge current immunity test	Peak 3,000 A Virtual front time 8 µs Virtual time to half value 20 µs	Passed

Dielectric Strength

Parameter	Conditions	Values
$U_{W,prim ext{-sec}}$	Impulse (1.2 μs/50 μs), PIN 1-6 vs insulated primary wire, 5 pulse -> polarity +, 5 pulse -> polarity -	5,500 V _{rms}
U _d	Test voltage, 60 seconds PIN 1-6 vs insulated primary wire	1,500 V _{rms}
U _{PDx1.5}	Partial discharge voltage, PIN 1-6 vs insulated primary wire * acc. to table 24	1,200 V _{rms}
U _{PDx1.875}	Partial discharge voltage, PIN 1-6 vs insulated primary wire * acc. to table 24	1,500 V _{rms}

^{*} IEC 61800-5-1:2007

Table 1 - Ratings & Part Number Reference

Part	Measurement	DC Detection	AC Detection	DC Alarm	AC Alarm
Number	Range (mA)	Current ¹ (mA)	Current ¹² (mArms)	Response Time (ms)	Response Time (ms)
FG-R01-4A	-50 - +50	4.5 typical 3 minimum 6 maximum	17.5 typical 15 minimum 20 maximum (at 55 Hz)	280 typical, 1,000 maximum (at measurement = 6 mA) 24 typical, 250 maximum (at measurement = 60 mA) 6 typical, 15 maximum (at measurement = 300 mA)	60 typical, 250 maximum (at measurement = 30 mArms) 20 typical, 100 maximum (at measurement = 60 mArms) 8 typical, 20 maximum (at measurement = 150 mArms) 7 typical, 10 maximum (at measurement = 264 mArms) 7 typical, 10 maximum (at measurement > 5 Arms)

¹ Recovery level = detection current/2.

² Frequency characteristic of AC detection current = -1% typical, -2% minimum at 45 Hz/55 Hz and +1% typical, +2% maximum at 65 Hz/55 Hz.

Part Number	PIN 3 AOUT Sensitivity (V/A)	PIN 3 AOUT Offset Voltage (V)	PIN 3 AOUT Frequency Range (Hz)	Hole Diameter (mm)	Weight (g)
FG-R01-4A	40 typical	2.25 typical	150 maximum (at −3 dB)	Ф 13.5	20

Recommended Wire Configuration for Bare Wire

^{*1} Please consider clearance between primary and primary.

Soldering Process

Wave Soldering	Preheating temperature	100 - 140°C
	Preheating time	within 40 seconds
	Heating temperature	260°C
	Heating time	within 10 seconds

Packaging

Туре	Packaging Type	Pieces Per Box
FG	Tray	300

The product is packed in antistatic trays.

Marking

Self-Test Operation

Time Chart

Parameter	Minimum	Maximum
t1	0.12	0.60
t2	0.80	1.30
t3	0.70	1.20
t4	1.40	2.10

Recommended Circuit

Typical Configuration Diagram

Appendix 3 Regarding Applying RDC-MD for 4A Type

FG-R0*-4A is tripped DC fault with high AC residual current of more than 60 mA.

When using the sensor as RDC-MD, break times are faster than required non-operating time.

You need to set a delay time to keep above minimum and below maximum response time at non-operating time. An example of setting the delay time for the controller is shown above.

Recommended Circuit (cont.)

Calculation Example Based on Typical Values

- On-delay needed: 69 ms
- Relay break time (typical): 15 ±4 ms (11 ~ 19 ms)

Residual	IEC62955 Requirement FG-R01-4A		2)	3)	
Currents	Break Times (ms)	Response Non Operating Time (ms)	1) DC Fault Break Time (ms)	Add Delay (ms)	Add Relay Response Time (ms)
DC 6 mA	≤10,000	N/A	≤1,000	≤1,069	<1,088
DC 60 mA	≤300	N/A	≤100 +6	9 ≤169 +1	9 <188
DC 200 mA	≤100	N/A	≤12	≤81	≤100
≤AC 30 mA	N/A	No DC Tripping	No DC Tripping	No DC Tripping	No DC Tripping
AC 60 mA	N/A	≥300	No DC Tripping	No DC Tripping	No DC Tripping
AC 150 mA	N/A	>80	>6 +6	<u>≥75</u> +1	≥86
AC 5 A	N/A	>80	>0	≥69	≥80

FG, Fluxgate-Based Residual Current Sensor

Overview

The FG-R02-4A sensor is a high-sensitivity AC and DC leakage current sensor with individual open drain alarms and an analog output for leakage current indication. In addition, its integrated test coil can be initiated by a test input to perform a functional alarm test.

Applications

Typical applications include residual current sensor for In-Cable Control and Protection Devices (IC-CPD) or Wallbox.

Benefits

- · Open-loop, fluxgate-based current sensor
- · PCB mounting
- · Digital output of fault detection
- Conforms to IEC 62752:2016/A1:2018
- Conforms to IEC 62955:2018 ¹
- · Conforms to UL 2231-2
- · RoHS compliant
- · 3,000 A surge current capability
- · Composed of AEC-Q certified parts

Ordering Information

FG-	R02-	4A
Series	Shape	Current Detection Standards
FG	R02 = Horizontal with busbar	4A = IEC 62752:2016/A1:2018 and UL 2231-2, IEC 62955:2018 ¹

¹ Conditional and dependant on the circuit/system designed as explained in the section Recommended Circuit of this datasheet.

Dimensions in mm

Pin Number	Symbol
1	VDD
2	GND
3	AOUT
4	DC Fault
5	AC Fault
6	TEST
7-10	Busbar for Primary Wires

PCB Footprint - Top View

Output Characteristics

Switching Operation

When the residual current exceeds the threshold level (Idn(DC) or Idn(AC)), PIN 4 (DC Alarm) or PIN 5 (AC Alarm) will change from low level to high impedance. Each output goes back from high impedance to low level when residual current falls below recovery level.

Output Characteristics (cont.)

PIN 3 Analog Output - DC Characteristics

Output State

- alpar orato		
DC Alarm	AC Alarm	State
GND	GND	Normal Condition
High Impedance	GND	DC Detection Current > 6 mA
GND	High Impedance	AC Detection Current > 20 mA
High Impedance	High Impedance	DC Detection Current > 6 mA and AC Detection Current > 20 mA

 $\label{thm:condition} \textit{Temperature of primary wire should not exceed 105°C}.$

The rise time of the supply voltage is 50 us to 100 ms.

Output Characteristics (cont.)

Frequency Characteristics of Analog Output

Trip Current of Pulsating DC at Phase 0°, 90°, 180°

Above data are not guaranteed values, for reference only.

Frequency Characteristics of Response Value

Trip Current of AC + DC

Environmental Compliance

FG sensors are RoHS compliant.

Specifications

Item	Performance Characteristics
Primary Rated Voltage	480 V
Primary Nominal Current	40 A Maximum
Supply Voltage Range	4.75 – 5.25 V (5 V typical)
Maximum Input Voltage of Digital Output	Supply Voltage + 0.3 V
Input Voltage Range of TEST (LOW)	0.0 - 0.6 V
Input Voltage Range of TEST (HIGH)	2.5 V - Supply Voltage
Maximum Sink Current of Digital Output	10 mA
Current Consumption	13 mA (at measurement 0 mA)
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	-40°C to +105°C

Tests

ESD Test

DC Detection Current within specifications as per Table 1 – Ratings & Part Number Reference after ESD test.

Parameter	Result
Electrostatic Discharge Voltage Human-Body Model (HBM) R = 1,500 Ω, C = 100 pF, U = ±2,000 V	Passed
Electrostatic Discharge Voltage Charged-Device Model (CDM) U = ±800 V	Passed

Tests (cont.)

EMC Test

DC Alarm and AC Alarm do not malfunction during noise stimulation.

Parameter	Conditions	Result
IEC 61000-4-3 Radiated, radio-frequency, electromagnetic field immunity	20 V/m, 80 MHz – 1 GHz 80% AM 1 kHz	Passed
ISO 11452-2 (ALSE) Electrical disturbances from narrowband radiated electromagnetic energy	50 V/m 200 MHz – 800 MHz 80% AM 1 kHz, 800 MHz – 2 GHz PM	Passed
ISO 11452-4 (BCI) Electrical disturbances from narrowband radiated electromagnetic energy	100 mA 20 MHz – 200 MHz 80% AM 1 kHz	Passed
IEC 62955 § 9.18.2 Surge current immunity test	Peak 3,000 A Virtual front time 8 µs Virtual time to half value 20 µs	Passed

Dielectric Strength

Parameter	Conditions	Values
$U_{W,prim ext{-sec}}$	Impulse (1.2 μs/50 μs), PIN 1-6 vs insulated primary wire, 5 pulse -> polarity +, 5 pulse -> polarity -	5,500 V _{rms}
U _d	Test voltage, 60 seconds PIN 1-6 vs insulated primary wire	1,500 V _{rms}
U _{PDx1.5}	Partial discharge voltage, PIN 1-6 vs insulated primary wire * acc. to table 24	1,200 V _{rms}
U _{PDx1.875}	Partial discharge voltage, PIN 1-6 vs insulated primary wire * acc. to table 24	1,500 V _{rms}

^{*} IEC 61800-5-1:2007

Table 1 - Ratings & Part Number Reference

Part	Measurement	DC Detection	AC Detection	DC Alarm	AC Alarm
Number	Range (mA)	Current ¹ (mA)	Current ¹² (mArms)	Response Time (ms)	Response Time (ms)
FG-R02-4A	-50 - +50	4.5 typical 3 minimum 6 maximum	17.5 typical 15 minimum 20 maximum (at 55 Hz)	280 typical, 1,000 maximum (at measurement = 6 mA) 24 typical, 250 maximum (at measurement = 60 mA) 6 typical, 15 maximum (at measurement = 300 mA)	60 typical, 250 maximum (at measurement = 30 mArms) 20 typical, 100 maximum (at measurement = 60 mArms) 8 typical, 20 maximum (at measurement = 150 mArms) 7 typical, 10 maximum (at measurement = 264 mArms) 7 typical, 10 maximum (at measurement > 5 Arms)

¹ Recovery level = detection current/2.

² Frequency characteristic of AC detection current = -1% typical, -2% minimum at 45 Hz/55 Hz and +1% typical, +2% maximum at 65 Hz/55 Hz.

Part Number	PIN 3 AOUT Sensitivity (V/A)	PIN 3 AOUT Offset Voltage (V)	PIN 3 AOUT Frequency Range (Hz)	Hole Diameter (mm)	Weight (g)
FG-R02-4A	40 typical	2.25 typical	150 maximum (at −3 dB)	•	20

Soldering Process

Wave Soldering	Preheating temperature	100 - 140°C
	Preheating time	within 40 seconds
	Heating temperature	260°C
	Heating time	within 10 seconds

Packaging

Туре	Packaging Type	Pieces Per Box
FG	Tray	300

The product is packed in antistatic trays.

Marking

Self-Test Operation

Time Chart

Parameter	Minimum	Maximum
t1	0.12	0.60
t2	0.80	1.30
t3	0.70	1.20
t4	1.40	2.10

Recommended Circuit

Typical Configuration Diagram

Appendix 3 Regarding Applying RDC-MD for 4A Type

FG-R0*-4A is tripped DC fault with high AC residual current of more than 60 mA.

When using the sensor as RDC-MD, break times are faster than required non-operating time.

You need to set a delay time to keep above minimum and below maximum response time at non-operating time. An example of setting the delay time for the controller is shown above.

FG, Fluxgate-Based Residual Current Sensor

Overview

The FG-R05-3A sensor is a high-sensitivity AC and DC leakage current sensor with individual open drain alarms and an analog output for leakage current indication. In addition, its integrated test coil can be initiated by a test input to perform a functional alarm test.

Applications

Typical applications include residual current sensor for In-Cable Control and Protection Devices (IC-CPD) or Wallbox.

Benefits

- · Open-loop, fluxgate-based current sensor
- · PCB mounting
- · Digital output of fault detection
- · Conforms to IEC 62752:2016/A1:2018
- Conforms to UL 2231-2
- · RoHS compliant
- · Composed of AEC-Q certified parts

Ordering Information

FG-	R05-	3A
Series	Shape	Current Detection Standards
FG	R05 = Vertical	3A = IEC 62752:2016/ A1:2018 and UL 2231-2

Dimensions in mm

Pin Number	Symbol	Pin Type	Functions
1	VDD	Power	Power supply, 5 V
2	GND	Power	Ground
3	AOUT	Analog output	Analog output. This is for monitoring purposes, and is not safety function! Offset voltage is 2.25 V (typical). Sensitivity is 40 V/A (typical).
4	DC Alarm (Open-Drain)	Open drain	Active high if DC current is in the range of 3 to 6 mA.
5	AC Alarm (Open-Drain)	Open drain	Active high if AC current is in the range of 15 to 20 mA. IEC62752:2016 and UL 2231 (CCID20)
6	TEST	Input	Test input. Internal pull-down with 100 k Ω . Test sequence starts when input positive pulse input (>120 usec).

PCB Footprint - Top View

Output Characteristics

Switching Operation

When the residual current exceeds the threshold level (Idn(DC) or Idn(AC)), PIN 4 (DC Alarm) or PIN 5 (AC Alarm) will change from low level to high impedance. Each output goes back from high impedance to low level when residual current falls below recovery level.

PIN 3 Analog Output - DC Characteristics

Output Characteristics cont.

Output State

DC Alarm	AC Alarm	State
GND	GND	Normal Condition
High Impedance	GND	DC Detection Current > 6 mA
GND	High Impedance	AC Detection Current > 20 mA
High Impedance	High Impedance	DC Detection Current > 6 mA and AC Detection Current > 20 mA

Temperature of primary wire should not exceed 105°C. The rise time of the supply voltage is 50 us to 100 ms.

Frequency Characteristics of Analog Output

Frequency Characteristics of Response Value

Trip Current of Pulsating DC at Phase 0°, 90°, 180°

Trip Current of AC + DC

Above data are not guaranteed values, for reference only.

Environmental Compliance

FG sensors are RoHS compliant.

Specifications

Item	Performance Characteristics
Primary Rated Voltage	250 V
Primary Nominal Current	80/40 A Maximum (1 phase/3 phase)
Supply Voltage Range	4.75 – 5.25 V (5 V typical)
Maximum Input Voltage of Digital Output	Supply Voltage + 0.3 V
Input Voltage Range of TEST (LOW)	0.0 - 0.6 V
Input Voltage Range of TEST (HIGH)	2.5 V - Supply Voltage
Maximum Sink Current of Digital Output	10 mA
Current Consumption	13 mA (at measurement 0 mA)
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	-40°C to +105°C

Tests

ESD Test

DC Detection Current within specifications as per Table 1 – Ratings & Part Number Reference after ESD test.

Parameter	Result
Electrostatic Discharge Voltage Human-Body Model (HBM) R = 1,500 Ω, C = 100 pF, U = ±2,000 V	Passed
Electrostatic Discharge Voltage Charged-Device Model (CDM) U = ±800 V	Passed

Tests cont.

EMC Test

DC Alarm and AC Alarm do not malfunction during noise stimulation.

Parameter	Conditions	Result
IEC 61000-4-3 Radiated, radio-frequency, electromagnetic field immunity	20 V/m, 80 MHz – 1 GHz 80% AM 1 kHz	Passed
ISO 11452-2 (ALSE) Electrical disturbances from narrowband radiated electromagnetic energy	50 V/m 200 MHz – 800 MHz 80% AM 1 kHz, 800 MHz – 2 GHz PM	Passed
ISO 11452-4 (BCI) Electrical disturbances from narrowband radiated electromagnetic energy	100 mA 20 MHz – 200 MHz 80% AM 1 kHz	Passed

Dielectric Strength

Parameter	Conditions	Values
U _{W, prim-sec}	Impulse (1.2 µs/50 µs), PIN 1-6 vs insulated primary wire, 5 pulse -> polarity +, 5 pulse -> polarity -	5,500 V _{rms}
U_d	Test voltage, 60 seconds PIN 1-6 vs insulated primary wire	1,500 V _{rms}
U _{PDx1.5}	Partial discharge voltage, PIN 1-6 vs insulated primary wire * acc. to table 24	1,200 V _{rms}
U _{PDx1.875}	Partial discharge voltage, PIN 1-6 vs insulated primary wire * acc. to table 24	1,500 V _{rms}

^{*} IEC 61800-5-1:2007

Table 1 - Ratings & Part Number Reference

Part	Measurement	DC Detection	AC Detection	DC Alarm	AC Alarm
Number	Range (mA)	Current ¹ (mA)	Current ¹² (mArms)	Response Time (ms)	Response Time (ms)
FG-R05-3A	-50 - +50	4.5 typical 3 minimum 6 maximum	17.5 typical 15 minimum 20 maximum (at 55 Hz)	280 typical, 1,000 maximum (at measurement = 6 mA) 24 typical, 250 maximum (at measurement = 60 mA) 6 typical, 15 maximum (at measurement = 300 mA)	60 typical, 250 maximum (at measurement = 30 mArms) 20 typical, 100 maximum (at measurement = 60 mArms) 8 typical, 20 maximum (at measurement = 150 mArms) 7 typical, 10 maximum (at measurement = 264 mArms) 7 typical, 10 maximum (at measurement > 5 Arms)

¹ Recovery level = detection current/2.

² Frequency characteristic of AC detection current = -1% typical, -2% minimum at 45 Hz/55 Hz and +1% typical, +2% maximum at 65 Hz/55 Hz.

Part Number	PIN 3 AOUT Sensitivity (V/A)	PIN 3 AOUT Offset Voltage (V)	PIN 3 AOUT Frequency Range (Hz)	Hole Diameter (mm)	Weight (g)
FG-R05-3A	40 typical	2.25 typical	150 maximum (at −3 dB)	Ф 12.6	20

Recommended Wire Configurations

In Case of Insulated Wire

Three phase system < 480 V

In Case of Bare Wire

Reinforced insulation, insulation material group III, pollution degree 2, altitude < 5,000 m and overvoltage category II. Please take enough creepage distance between each pin.

Soldering Process

FG-R05-3A

Wave Soldering	Preheating temperature	100 - 140°C
	Preheating time	within 40 seconds
	Heating temperature	260°C
	Heating time	within 10 seconds

Packaging

Туре	Packaging Type	Pieces Per Box
FG	Tray	300

The product is packed in antistatic trays.

Marking

Lot Code			
1st and 2nd digit = Last two digits of Year	19 = 2019 20 = 2020 21 = 2021 22 = 2022		
3rd and 4th digit = Month of the Year	01 = January 02 = February to 11 = November 12 = December		
5th and 6th digit = Day of the Month	01 = 1st to 31 = 31st		
7th digit = Serial Number	01, 02, etc.		

Self-Test Operation

Parameter	Minimum	Maximum
t1	0.12	0.60
t2	0.80	1.30
t3	0.70	1.20
t4	1.40	2.10

Recommended Circuit

Application Hints

- An X capacitor is effective in suppressing normal mode noise from the input.
- A Y capacitor and an AC line filter are effective in suppressing common mode noise from the input.
- It is recommended to use a High-PSRR LDO for the power input to the FG-R05-3A.
- · Adding an LC filter to the Vdd improves noise immunity.
- Adding a capacitor of a few hundred pF or less to the Vdd improves high frequency noise immunity.
- · Adding capacitors to the AC / DC Alarm jack and GND improve noise immunity.

FG, Fluxgate-Based Residual Current Sensor

Overview

The FG-R05-4A sensor is a high-sensitivity AC and DC leakage current sensor with individual open drain alarms and an analog output for leakage current indication. In addition, its integrated test coil can be initiated by a test input to perform a functional alarm test.

Applications

Typical applications include residual current sensor for In-Cable Control and Protection Devices (IC-CPD) or Wallbox.

Benefits

- · Open-loop, fluxgate-based current sensor
- · PCB mounting
- · Digital output of fault detection
- Conforms to IEC 62752:2016/A1:2018
- Conforms to IEC 62955:2018 ¹
- · Conforms to UL 2231-2
- · RoHS compliant
- · 3,000 A surge current capability
- · Composed of AEC-Q certified parts

Ordering Information

FG-	R05-	4A
Series	Shape	Current Detection Standards
FG	R05 = Vertical	4A = IEC 62752:2016/A1:2018 and UL 2231-2, IEC 62955:2018 ¹

¹ Conditional and dependant on the circuit/system designed as explained in the section Recommended Circuit of this datasheet.

Dimensions in mm

Pin Number	Symbol	Pin Type	Functions
1	VDD	Power	Power supply, 5 V
2	GND	Power	Ground
3	AOUT	Analog output	Analog output. This is for monitoring purposes, and is not safety function! Offset voltage is 2.25 V (typical). Sensitivity is 40 V/A (typical).
4	DC Alarm (Open-Drain)	Open drain	Active high if DC current is in the range of 3 to 6 mA.
5	AC Alarm (Open-Drain)	Open drain	Active high if AC current is in the range of 15 to 20 mA. IEC62752:2016 and UL 2231 (CCID20)
6	TEST	Input	Test input. Internal pull-down with 100 k Ω . Test sequence starts when input positive pulse input (>120 usec).

PCB Footprint - Top View

Output Characteristics

Switching Operation

When the residual current exceeds the threshold level (Idn(DC) or Idn(AC)), PIN 4 (DC Alarm) or PIN 5 (AC Alarm) will change from low level to high impedance. Each output goes back from high impedance to low level when residual current falls below recovery level.

PIN 3 Analog Output - DC Characteristics

Output Characteristics (cont.)

Output State

DC Alarm	AC Alarm	State
GND	GND	Normal Condition
High Impedance	GND	DC Detection Current > 6 mA
GND	High Impedance	AC Detection Current > 20 mA
High Impedance	High Impedance	DC Detection Current > 6 mA and AC Detection Current > 20 mA

Temperature of primary wire should not exceed 105°C. The rise time of the supply voltage is 50 us to 100 ms.

Frequency Characteristics of Analog Output

Frequency Characteristics of Response Value

Trip Current of Pulsating DC at Phase 0°, 90°, 180°

Trip Current of AC + DC

Above data are not guaranteed values, for reference only.

Environmental Compliance

FG sensors are RoHS compliant.

Specifications

Item	Performance Characteristics
Primary Rated Voltage	250 V
Primary Nominal Current	80/40 A Maximum (1 phase/3 phase)
Supply Voltage Range	4.75 – 5.25 V (5 V typical)
Maximum Input Voltage of Digital Output	Supply Voltage + 0.3 V
Input Voltage Range of TEST (LOW)	0.0 - 0.6 V
Input Voltage Range of TEST (HIGH)	2.5 V - Supply Voltage
Maximum Sink Current of Digital Output	10 mA
Current Consumption	13 mA (at measurement 0 mA)
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	-40°C to +105°C

Tests

ESD Test

DC Detection Current within specifications as per Table 1 – Ratings & Part Number Reference after ESD test.

Parameter	Result
Electrostatic Discharge Voltage Human-Body Model (HBM) R = 1,500 Ω, C = 100 pF, U = ±2,000 V	Passed
Electrostatic Discharge Voltage Charged-Device Model (CDM) U = ±800 V	Passed

Tests (cont.)

EMC Test

DC Alarm and AC Alarm do not malfunction during noise stimulation.

Parameter	Conditions	Result
IEC 61000-4-3 Radiated, radio-frequency, electromagnetic field immunity	20 V/m, 80 MHz – 1 GHz 80% AM 1 kHz	Passed
ISO 11452-2 (ALSE) Electrical disturbances from narrowband radiated electromagnetic energy	50 V/m 200 MHz – 800 MHz 80% AM 1 kHz, 800 MHz – 2 GHz PM	Passed
ISO 11452-4 (BCI) Electrical disturbances from narrowband radiated electromagnetic energy	100 mA 20 MHz – 200 MHz 80% AM 1 kHz	Passed
IEC 62955 § 9.18.2 Surge current immunity test	Peak 3,000 A Virtual front time 8 µs Virtual time to half value 20 µs	Passed

Dielectric Strength

Parameter	Conditions	Values
U _{W, prim-sec}	Impulse (1.2 μs/50 μs), PIN 1-6 vs insulated primary wire, 5 pulse -> polarity +, 5 pulse -> polarity -	5,500 V _{rms}
U _d	Test voltage, 60 seconds PIN 1-6 vs insulated primary wire	1,500 V _{rms}
U _{PDx1.5}	Partial discharge voltage, PIN 1-6 vs insulated primary wire * acc. to table 24	1,200 V _{rms}
U _{PDx1.875}	Partial discharge voltage, PIN 1-6 vs insulated primary wire * acc. to table 24	1,500 V _{rms}

^{*} IEC 61800-5-1:2007

Table 1 - Ratings & Part Number Reference

Part	Measurement	DC Detection	AC Detection	DC Alarm	AC Alarm
Number	Range (mA)	Current ¹ (mA)	Current ¹² (mArms)	Response Time (ms)	Response Time (ms)
FG-R05-4A	-50 - +50	4.5 typical 3 minimum 6 maximum	17.5 typical 15 minimum 20 maximum (at 55 Hz)	280 typical, 1,000 maximum (at measurement = 6 mA) 24 typical, 250 maximum (at measurement = 60 mA) 6 typical, 15 maximum (at measurement = 300 mA)	60 typical, 250 maximum (at measurement = 30 mArms) 20 typical, 100 maximum (at measurement = 60 mArms) 8 typical, 20 maximum (at measurement = 150 mArms) 7 typical, 10 maximum (at measurement = 264 mArms) 7 typical, 10 maximum (at measurement > 5 Arms)

¹ Recovery level = detection current/2.

² Frequency characteristic of AC detection current = -1% typical, -2% minimum at 45 Hz/55 Hz and +1% typical, +2% maximum at 65 Hz/55 Hz.

Table 1 - Ratings & Part Number Reference cont.

Part Number	PIN 3 AOUT Sensitivity (V/A)	PIN 3 AOUT Offset Voltage (V)	PIN 3 AOUT Frequency Range (Hz)	Hole Diameter (mm)	Weight (g)
FG-R05-4A	40 typical	2.25 typical	150 maximum (at -3 dB)	Ф 12.6	20

Recommended Wire Configurations

In Case of Insulated Wire

Three phase system < 480 V

In Case of Bare Wire

Reinforced insulation, insulation material group III, pollution degree 2, altitude < 5,000 m and overvoltage category II. Please take enough creepage distance between each pin.

Soldering Process

Wave Soldering	Preheating temperature	100 - 140°C	
	Preheating time	within 40 seconds	
	Heating temperature	260°C	
	Heating time	within 10 seconds	

Packaging

Туре	Packaging Type	Pieces Per Box
FG	Tray	300

The product is packed in antistatic trays.

Marking

Lot Code			
1st and 2nd digit = Last two digits of Year	19 = 2019 20 = 2020 21 = 2021 22 = 2022		
3rd and 4th digit = Month of the Year	01 = January 02 = February to 11 = November 12 = December		
5th and 6th digit = Day of the Month	01 = 1st to 31 = 31st		
7th digit = Serial Number	01, 02, etc.		

Self-Test Operation

Time Chart

Parameter	Minimum	Maximum
t1	0.12	0.60
t2	0.80	1.30
t3	0.70	1.20
t4	1.40	2.10

Recommended Circuit

Typical Configuration Diagram

Appendix 3 Regarding Applying RDC-MD for 4A Type

FG-R0*-4A is tripped DC fault with high AC residual current of more than 60 mA. When using the sensor as RDC-MD, break times are faster than required non-operating time. You need to set a delay time to keep above minimum and below maximum response time at non-operating time. An example of setting the delay time for the controller is shown above.

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (832)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(7172)727-132

Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Ореп (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37

Магнитогорск (3519)55-03-13

Киргизия +996(312)96-26-47

Пермь (342)205-81-47

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саранск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (8692)22-31-93 Симферополь (8612)25-41-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Суртут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93